منابع مشابه
A Note on Solving Prandtl's Integro-Differential Equation
A simple method for solving Prandtl's integro-differential equation is proposed based on a new reproducing kernel space. Using a transformation and modifying the traditional reproducing kernel method, the singular term is removed and the analytical representation of the exact solution is obtained in the form of series in the new reproducing kernel space. Compared with known investigations, its ...
متن کاملA note on unique solvability of the absolute value equation
It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...
متن کاملA RESEARCH NOTE ON THE SECOND ORDER DIFFERENTIAL EQUATION
Let U(t, ) be solution of the Dirichlet problem y''+( t-q(t))y= 0 - 1 t l y(-l)= 0 = y(x), with variabIe t on (-1, x), for fixed x, which satisfies the initial condition U(-1, )=0 , (-1, )=1. In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigen values has been investigated . Furthermore, the leading term of the asymptotic formula for ...
متن کاملA Note on the Degasperis-Procesi Equation
Indeed [1, 13, 15], both equations are bi-Hamiltonian and have an associated isospectral problem. Therefore they are both formally integrable (the integrability of (1.2) by means of the scattering/inverse scattering approach is discussed in [5, 9, 19]). Also, both equations admit exact peaked solitary wave solutions which have to be understood as weak solutions [10, 8, 22]. Moreover, using Kato...
متن کاملNote on a Nonlinear Volterra Equation
9. S. G. Krein, and O. I. Prozorovskaya, An analogue of Seidel's method for operator equations, Voronez. Gos. Univ., Trudy Sem. Functional. Anal. 5 (1957), 35-38. 10. W. V. Petryshyn, The generalized overrelaxation method for the approximate solution of operator equations in Hubert space, J. Soc. Indust. Appl. Math. 10 (1962), 675-690. 11. S. Schechter, Relaxation methods for linear equations, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Experimental Analysis of Behavior
سال: 1980
ISSN: 0022-5002
DOI: 10.1901/jeab.1980.34-199